專任教授

戴義欽

教授

辦公室:水利系館4樓 4687室

電話:(06)2757575轉63260
信箱:yctai@mail.ncku.edu.tw
NCKU Research

研究團隊網頁

學歷:

德國達姆司塔特工業大學 工學博士 (Dr.-Ing.)

德國達姆司塔特工業大學 工程碩士 (Dipl.-Ing.)

國立台灣大學 物理學系 理學士

研究專長:

顆粒粒子動力學、土石流 (理論模型、數值模式)、環境流體力學(理論、實驗與數值模型之發展)、計算流體力學(守恆定律數值方法)、崩塌(理想)破壞曲面估算、Three.js 三維圖形網頁使用者互動式立體動畫 (災害情境探討)、MPI 平行運算 (土石流、降雨淹水模式)、GPU (CUDA) 降雨淹水模式即時運算

開授課程: 

流體力學、工程數學、數值分析、普通物理學、海洋學概論、海洋物理學、地球物理流體力學、計算機應用、土石流理論、計算水力學

國立成功大學 水利及海洋工程學系  教授

國立成功大學 水利及海洋工程學系 副教授

國立成功大學 水利及海洋工程學系 助理教授

國立暨南國際大學 土木工程學系 副教授

國立暨南國際大學 土木工程學系 助理教授

台灣德國萊因技術監護股份有限公司 機械與機器產品部門、機械(力學)實驗室 專案工程師、副理 暨實驗室負責人

德國達姆司塔特工業大學力學研究所博士後研究員

2017年 科技部與德國研究基金會(MOST-DFG)研究人員互訪計畫

2017年 106學年度水利及海洋工程學系 教學優良教師及優良導師

2014年~2016年 國科會與法國國家資訊暨自動化研究院聯合團隊計畫。

2014年  103學年度水利及海洋工程學系 教學優良教師。

2013年 國科會103年度補助科學與技術人員國外短期研究。

2012年 國科會101年度優秀年輕學者研究計畫補助。

2009年 國立暨南國際大學 972優良TA 指導教師

2008年 國立暨南國際大學 科技學院 大學部專題研究競賽 佳作獎

2008年 國立暨南國際大學 961優良TA 指導教師

2007年 中央研究院 96年度 短期訪問研究(應用科學中心)

2007年 國立暨南國際大學 科技學院 大學部專題研究競賽 優等獎

2006年 951優良TA 指導教師

2006年 中央研究院 95年度 短期訪問研究(應用科學中心)

期刊論文(Refereed Journal Publications, since 2011

  1. Y.C. Tai, C.J. Ko, K.D. Li, Y.C. Wu, C.Y. Kuo, R.F. Chen and C.W. Lin (2020). An idealized landslide failure surface and its impacts on the traveling paths. Frontiers in Earth Sciences8:313, doi: 10.3389/feart.2020.00313. (SCI)
  2. C.Y. Kuo, P.W. Tsai, Y.C. Tai, Y.H. Chan, R.F. Chen and C.W. Lin (2020). Application Assessments of Using Scarp Boundary-Fitted, Volume Constrained, Smooth Minimal Surfaces as Fracture Interfaces of Deep-Seated Landslides. Frontiers in Earth Sciences8:211, doi: 10.3389/feart.2020.00211. (SCI)
  3. Ke, L., Jin, Y.-C., Xu, T. and Tai, Y.-C. (2020). Investigating the physical characteristics of dense granular flows by coupling the weakly compressible moving particle semi-implicit method with the rheological model. Acta Geotech., 15, 1815–1830. https://doi.org/10.1007/s11440-019-00905-8 (SCI)
  4. Carleo, L. Sarno, M. N. Papa, Y.-C. Tai, P. Villani, (2019). Volume fraction and velocity fields of nearly uniform granular flows in a narrow channel geometry with smooth bed. Advanced Powder Technology, 30(10), Oct. 2019, 2379-2395. https://doi.org/10.1016/j.apt.2019.07.021 (SCI)
  5. Olalekan Abdul-Azeez Rufai, Yee-Chung Jin and Yih-Chin Tai (2019). Rheometry of dense granular collapse on inclined planes. Granular Matter, 21:62, DOI:10.1007/s10035-019-0922-6. (SCI)
  6. Xu, Y.-C. Jin and Y.-C. Tai (2019). Granular surface waves interaction across phases modeled by mesh-free method. Powder Technology, 355, 226–241. (SCI)
  7. Heß, J., Tai, Y. C., & Wang, Y. (2019). Debris Flows with Pore Pressure and Intergranular Friction on Rugged Topography. Computers & Fluids, 190, 139-155. https://doi.org/10.1016/j. compfluid.2019.06.015 (SCI)
  8. Y.C. Tai, J. Heß and Y. Wang (2019) Modeling two-phase debris flows with grain-fluid separation over rugged topography: Application to the 2009 Hsiaolin event, Taiwan. Journal of Geophysical Research -- Earth Surface, 124, 305–333. http://doi.org/10.1029/2018JF004671. (SCI)
  9. Sarno, A. Carravetta, Y.-C. Tai, R. Martino, M. N. Papa, C.-Y. Kuo (2018). Measuring the velocity fields of granular flows -- Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach. Advanced Powder Technology, https://doi.org/10.1016/j.apt.2018. 08.014. (SCI)
  10. L. Delis, H. Guillard, Yih-Chin Tai (2018) Numerical simulation of hydraulic jumps with shear shallow water model. https://hal.archives-ouvertes.fr/hal-01647019v1
  11. Tibing Xu, Yee-Chung Jin, Yih-Chin Tai and Chun-Hua Lu (2017). Simulation of granular column collapses using the (m-I) rheology model with experimental validation. Journal of Non-Newtonian Fluid Mechanics, 247, 146–164. (SCI)
  12. Chin-Kai Cheng, Yih-Chin Tai and Yee-Chung Jin (2017). “Particle Image Velocity Measure -ment and Mesh-Free Methods Modeling Study of Forced Hydraulic Jumps.” ASCE's Journal of Hydraulic Engineering, 143(9), 04017028. DOI: 10.1061/(ASCE)HY.1943-7900.0001325. (SCI)
  13. Sarno, A. Carravetta, R. Martino, M.N. Papa and Y.-C. Tai (2017). “Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models.” Advances in Water Resources, 100, 183-198. doi:10.1016/j.advwatres.2016.12.014. (SCI)
  14. Sarno, L., Papa, M.N., Villani, P. & Tai, Y.C. (2016). “An optical method for measuring the near-wall volume fraction in granular dispersions.” Granular Matter, 18: 80. doi:10.1007/s10035- 016-0676-3. (SCI)
  15. Jin, Y. C., Guo, K., Tai, Y. C., & Lu, C. H. (2016). “Laboratory and numerical study of the flow field of subaqueous block sliding on a slope.” Ocean Engineering, 124, 371-383. (SCI)
  16. Kuo, C. Y., Sheng, L. T., Chiu, S. Y., Yang, Y. Z., Tai, Y. C., and Hsiau, S. S. (2015). “Measure- ment and discrete element simulation of a fixed-obstacle disturbed rapid granular chute flow.” Physics of Fluids (1994-present), 27(1), 013305. (SCI)
  17. Kuo, C. Y., Chang, K. J., Tsai, P. W., Wei, S. K., Chen, R. F., Dong, J. J., ... and Tai, Y. C. (2015). “Identification of Co-seismic Ground Motion due to Fracturing and Impact of the Tsaoling Landslide, Taiwan.” Engineering Geology, 196, 268-279; doi: 10.1016/j.enggeo.2015.07.013. (SCI)
  18. Sarno*, A. Carravetta, R. Martino and Y. C. Tai (2014) “A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns.” Physics of Fluids, 26, 103303; doi: 10.1063/1.4898563. (SCI)
  19. Xie, Y.C. Tai and Y.C. Jin* (2013). “Study of the Free Surface Flow of Water-Kaolinite Mixture by Moving Particle Semi-Implicit (MPS) Method.” International Journal for Numerical and Analytical Methods in Geomechanics, doi: 10.1002/nag.2234. (SCI)
  20. Sarno*, A. Carravetta, R. Martino and Y.C. Tai (2013). “The pressure coefficient in dam-break flows of dry granular matter.” Journal of Hydraulic EngineeringASCE, 139(11), 1126–1133. doi:10.1061/(ASCE) HY.1943- 7900.0000772. (SCI)
  21. C. Chen, C.Y. Kuo*, K.M. Shyue and Y.C. Tai (2013). “Gas Kinetic Scheme for Anisotropic Savage-Hutter Model.” Communications in Computational Physics, 13(5), 1432–1454. (SCI)
  22. T. Sheng, Y.C. Tai, C.Y. Kuo and S.S. Hsiau* (2013) “A two-phase model for dry density- varying granular flows.” Advanced Powder Technology, 24, 132–142. http://dx.doi.org/10.1016/ j.apt.2012.04.001 (SCI)
  23. Luca, C.Y. Kuo, K. Hutter and Y.C. Tai (2012). ”Modeling Shallow Over-Saturated Mixtures on Arbitrary Rigid Topography.” Journal of Mechanics, 28, 523–541. (SCI)
  24. Y.C. Tai and C.Y. Kuo (2012). Modelling shallow debris flows of the Coulomb-mixture type over temporally varying topography. Nat. Hazards Earth Syst. Sci., 12, 269–280, doi:10.5194/nhess-12- 269-2012. (SCI)
  25. Y.C. Tai, C.Y. Kuo and W.H. Hui (2012). “An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature.” Geophys. Astrophys. Fluid Dyn., 106(6), 596–629. DOI:10.1080/03091929.2011.648630. (SCI)
  26. Y. Kuo, Y.C. Tai, C.C. Chen, K.J. Chang, A. Y. Siau, J.J. Dong, R. Han and T. Shimamoto (2011). “The landslide stage of the Shiaolin catastrophe: simulation and validation.” Journal of Geophysical Research -- Earth Surface, 116, F04007, doi:10.1029/2010JF001921. (SCI)
  27. T. Sheng, C.Y. Kuo, Y.C. Tai and S.S. Hsiau (2011). “Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute.”Experiments in Fluids, DOI: 10.1007/s00348-011-1149-4. (SCI)

 

專書(Scientific books)

  1. Luca, I., Tai, Y. C., Kuo, C. Y. (2016) “Shallow Geophysical Mass Flows down Arbitrary Topo- graphy.” Springer Verlag, ISBN: 978-3-319-02626-8.

 

專書論文Special issues in scientific books, since 2011

  1. Sarno, Y.C. Tai, A. Carravetta, R. Martino, M.N. Papa and C.Y. Kuo (2019) “Challenges and improvements in applying a particle image velocimetry (PIV) approach to granular flows.” Journal of Physics: Conf. Series 1249 (2019) 012011.
  2. Sarno, M.N. Papa, Y.C. Tai, L. Carleo and P. Villani (2019) “A non-invasive stochastic-optical method (SOM) for estimating the volume fraction in granular flows: application on interrogation windows with different aspect ratios.” Journal of Physics: Conf. Series 1249 (2019) 012013.
  3. Sarno, M. N. Papa, Y. C. Tai, A. Carravetta, R. Martino (2014). “A reliable PIV approach for measuring velocity profiles of highly sheared granular flows.” G. Viccione and C. Guarnaccia (Eds), Latest Trends in Engineering Mechanics, Structures, Engineering Geology, 134-141, WSEAS Press, ISBN: 978-960-474-376-6.
  4. Sarno, A. Carravetta, R. Martino, Y. C. Tai and M. N. Papa (2014). “A two-layer depth- averaged model of dry granular material for dam-break flows.” G. Viccione and C. Guarnaccia (Eds), Latest Trends in Engineering Mechanics, Structures, Engineering Geology, 118-127, WSEAS Press, ISBN: 978-960-474-376-6.
  5. 戴義欽 (2013). “詭譎多變的近岸水流”, 科學發展, 488期, 22—27.
  6. Y.C. Tai, C.Y. Kuo, L.T. Sheng and S.S. Hsiau (2012). “A two-phase model for dry density-varying granular flows over general topography.” E. Eberhardt et al. (Eds), Landslides and Engineered Slopes: Protecting Society through Improved Understanding (Volume 2), 1679-1685, Taylor & Francis Group, London.